Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 10(2): 146-153, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937730

RESUMO

Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized the treatment of many types of cancer over the past decade. The initial therapeutic hypothesis underlying the mechanism of anti-PD-1/PD-L1 ICB was built around the premise that it acts locally in the tumor, reversing the exhaustion of PD-1hiCD8+ T cells by "releasing the brakes." However, recent studies have provided unprecedented insight into the complexity within the CD8+ T-cell pool in the tumor microenvironment (TME). Single-cell RNA sequencing and epigenetic profiling studies have identified novel cell surface markers, revealing heterogeneity within CD8+ T-cell states classified as unique. Moreover, these studies highlighted that following ICB, CD8+ T-cell states within and outside the TME possess a differential capacity to respond, mobilize to the TME, and seed an effective antitumor immune response. In aggregate, these recent developments have led to a reevaluation of our understanding of both the underlying mechanisms and the sites of action of ICB therapy. Here, we discuss the evidence for the reversibility of CD8+ T-cell exhaustion after ICB treatment and its implication for the further development of cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Antígeno B7-H1/farmacologia , Linfócitos T CD8-Positivos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
2.
J Immunother Cancer ; 9(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34903555

RESUMO

BACKGROUND: Programmed death (ligand) 1 (PD-(L)1) blockade and OX40/4-1BB costimulation have been separately evaluated in the clinic to elicit potent antitumor T cell responses. The precise mechanisms underlying single agent activity are incompletely understood. It also remains unclear if combining individual therapies leads to synergism, elicits novel immune mechanisms, or invokes additive effects. METHODS: We performed high-dimensional flow cytometry and single-cell RNA sequencing-based immunoprofiling of murine tumor-infiltrating lymphocytes (TILs) isolated from hosts bearing B16 or MC38 syngeneic tumors. This baseline infiltrate was compared to TILs after treatment with either anti-PD-(L)1, anti-OX40, or anti-4-1BB as single agents or as double and triple combinatorial therapies. Fingolimod treatment and CXCR3 blockade were used to evaluate the contribution of intratumoral versus peripheral CD8+ T cells to therapeutic efficacy. RESULTS: We identified CD8+ T cell subtypes with distinct functional and migratory signatures highly predictive of tumor rejection upon treatment with single agent versus combination therapies. Rather than reinvigorating terminally exhausted CD8+ T cells, OX40/4-1BB agonism expanded a stem-like PD-1loKLRG-1+Ki-67+CD8+ T cell subpopulation, which PD-(L)1 blockade alone did not. However, PD-(L)1 blockade synergized with OX40/4-1BB costimulation by dramatically enhancing stem-like TIL presence via a CXCR3-dependent mechanism. CONCLUSIONS: Our findings provide new mechanistic insights into the interplay between components of combinatorial immunotherapy, where agonism of select costimulatory pathways seeds a pool of stem-like CD8+ T cells more responsive to immune checkpoint blockade (ICB).


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/terapia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/terapia , Células-Tronco Neoplásicas/imunologia , Receptores CXCR3/metabolismo , Animais , Movimento Celular , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologia , Receptores CXCR3/genética , Análise de Célula Única
3.
Cell Rep ; 37(5): 109956, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731605

RESUMO

Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fígado/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/parasitologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Listeriose/sangue , Listeriose/imunologia , Listeriose/microbiologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/parasitologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Malária/sangue , Malária/parasitologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Parasitária , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Fagócitos/parasitologia , Plasmodium berghei/patogenicidade , Fatores de Tempo
4.
Front Immunol ; 12: 715234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354714

RESUMO

A paradigm shift in the understanding of the exhausted CD8+ T cell (Tex) lineage is underway. Originally thought to be a uniform population that progressively loses effector function in response to persistent antigen, single-cell analysis has now revealed that CD8+ Tex is composed of multiple interconnected subpopulations. The heterogeneity within the CD8+ Tex lineage is comprised of immune checkpoint blockade (ICB) permissive and refractory subsets termed stem-like and terminally differentiated cells, respectively. These populations occupy distinct peripheral and intratumoral niches and are characterized by transcriptional processes that govern transitions between cell states. This review presents key findings in the field to construct an updated view of the spatial, transcriptional, and functional heterogeneity of anti-tumoral CD8+ Tex. These emerging insights broadly call for (re-)focusing cancer immunotherapies to center on the driver mechanism(s) underlying the CD8+ Tex developmental continuum aimed at stabilizing functional subsets.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade , Neoplasias/imunologia , Animais , Antígenos/imunologia , Biomarcadores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Epigênese Genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Especificidade de Órgãos , Análise de Célula Única , Transcrição Gênica
5.
Elife ; 102021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34143731

RESUMO

Protective lung tissue-resident memory CD8+T cells (Trm) form after influenza A virus (IAV) infection. We show that IAV infection of mice generates CD69+CD103+and other memory CD8+T cell populations in lung-draining mediastinal lymph nodes (mLNs) from circulating naive or memory CD8+T cells. Repeated antigen exposure, mimicking seasonal IAV infections, generates quaternary memory (4M) CD8+T cells that protect mLN from viral infection better than 1M CD8+T cells. Better protection by 4M CD8+T cells associates with enhanced granzyme A/B expression and stable maintenance of mLN CD69+CD103+4M CD8+T cells, vs the steady decline of CD69+CD103+1M CD8+T cells, paralleling the durability of protective CD69+CD103+4M vs 1M in the lung after IAV infection. Coordinated upregulation in canonical Trm-associated genes occurs in circulating 4M vs 1M populations without the enrichment of canonical downregulated Trm genes. Thus, repeated antigen exposure arms circulating memory CD8+T cells with enhanced capacity to form long-lived populations of Trm that enhance control of viral infections of the mLN.


Assuntos
Linfócitos T CD8-Positivos , Linfonodos , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , Vírus da Influenza A/imunologia , Pulmão/citologia , Pulmão/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Transcriptoma/genética
6.
Mol Cancer Ther ; 19(10): 2105-2116, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32847983

RESUMO

Development of antagonistic mAbs that specifically target the immune checkpoint receptor, programmed cell death protein-1 (PD-1), is of great interest for cancer immunotherapy. Here, we report the biophysical characteristics and nonclinical antagonistic activities of sasanlimab (PF-06801591), a humanized anti-PD-1 antibody of IgG4 isotype. We show that sasanlimab binds selectively and with similar high potency to human and cynomolgus monkey PD-1 receptor and blocks its interaction with PD-L1 and PD-L2, with no detectable Fc-dependent effector function. The binding of sasanlimab to human and cynomolgus PD-1 is associated with the formation of a stable complex, which is likely to be the main driver of this high-affinity interaction. In vitro, sasanlimab significantly augmented T-cell proliferation and cytokine production in mixed lymphocyte reaction and superantigen stimulation assays. In vivo, sasanlimab accelerated the incidence of GvHD by enhancing T-cell proliferation and cytokine secretion in a xenogeneic model of acute GvHD and halted the growth of MC-38 colon adenocarcinoma tumors in human PD-1 knock-in mice. Pharmacokinetic and toxicokinetic findings from cynomolgus monkey showed that sasanlimab was active and well-tolerated. Taken together, the data presented here support the clinical development of sasanlimab for the treatment of patients with advanced cancers as a single agent or in combination with other immunotherapies.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Animais , Linhagem Celular Tumoral , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos
7.
Cell Rep ; 24(13): 3374-3382.e3, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257199

RESUMO

Lung-resident primary memory CD8+ T cell populations (Trm) induced by a single influenza infection decline within months, rendering the host susceptible to new heterosubtypic influenza infections. Here, we demonstrate that, relative to single virus exposure, repeated antigen exposure dramatically alters the dynamics of influenza-specific lung Trm populations. Lung Trm derived from repeatedly stimulated circulating memory CD8+ T cells exhibit extended durability and protective heterosubtypic immunity relative to primary lung Trm. Parabiosis studies reveal that the enhanced durability of lung Trm after multiple antigen encounters resulted from the generation of long-lasting circulating effector memory (Tem) populations, which maintained the ability to be recruited to the lung parenchyma and converted to Trm, in combination with enhanced survival of these cells in the lung. Thus, generating a long-lasting Trm precursor pool through repeated intranasal immunizations might be a promising strategy to establish long-lasting lung Trm-mediated heterosubtypic immunity against influenza.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Feminino , Pulmão/citologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Immunity ; 47(5): 835-847.e4, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29150238

RESUMO

Immune response (Ir) genes, originally proposed by Baruj Benacerraf to explain differential antigen-specific responses in animal models, have become synonymous with the major histocompatibility complex (MHC). We discovered a non-MHC-linked Ir gene in a T cell receptor (TCR) locus that was required for CD8+ T cell responses to the Plasmodium berghei GAP5040-48 epitope in mice expressing the MHC class I allele H-2Db. GAP5040-48-specific CD8+ T cell responses emerged from a very large pool of naive Vß8.1+ precursors, which dictated susceptibility to cerebral malaria and conferred protection against recombinant Listeria monocytogenes infection. Structural analysis of a prototypical Vß8.1+ TCR-H-2Db-GAP5040-48 ternary complex revealed that germline-encoded complementarity-determining region 1ß residues present exclusively in the Vß8.1 segment mediated essential interactions with the GAP5040-48 peptide. Collectively, these findings demonstrated that Vß8.1 functioned as an Ir gene that was indispensable for immune reactivity against the malaria GAP5040-48 epitope.


Assuntos
Antígeno de Histocompatibilidade H-2D/genética , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Receptores de Antígenos de Linfócitos T/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Regiões Determinantes de Complementaridade , Epitopos , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia
9.
Sci Immunol ; 2(7)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28783666

RESUMO

Lung-resident memory CD8 T cells (TRM) induced by influenza A virus (IAV) that are pivotal for providing subtype-transcending protection against IAV infection (heterosubtypic immunity) are not maintained long term, causing gradual loss of protection. The short-lived nature of lung TRM contrasts sharply with long-term maintenance of TRM induced by localized infections in the skin and in other tissues. We show that the decline in lung TRM is determined by an imbalance between apoptosis and lung recruitment and conversion to TRM of circulating memory cells. We show that circulating effector memory cells (TEM) rather than central memory cells (TCM) are the precursors for conversion to lung TRM Time-dependent changes in expression of genes critical for lymphocyte trafficking and TRM differentiation, in concert with enrichment of TCM, diminish the capacity of circulating memory CD8 T cells to form TRM with time, explaining why IAV-induced TRM are not stably maintained. Systemic booster immunization, through increasing the number of circulating TEM, increases lung TRM, providing a potential new avenue to enhance IAV vaccines.

10.
Nat Immunol ; 18(8): 931-939, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28604718

RESUMO

Activated CD8+ T cells differentiate into cytotoxic effector (TEFF) cells that eliminate target cells. How TEFF cell identity is established and maintained is not fully understood. We found that Runx3 deficiency limited clonal expansion and impaired upregulation of cytotoxic molecules in TEFF cells. Runx3-deficient CD8+ TEFF cells aberrantly upregulated genes characteristic of follicular helper T (TFH) cell lineage, including Bcl6, Tcf7 and Cxcr5. Mechanistically, the Runx3-CBFß transcription factor complex deployed H3K27me3 to Bcl6 and Tcf7 genes to suppress the TFH program. Ablating Tcf7 in Runx3-deficient CD8+ TEFF cells prevented the upregulation of TFH genes and ameliorated their defective induction of cytotoxic genes. As such, Runx3-mediated Tcf7 repression coordinately enforced acquisition of cytotoxic functions and protected the cytotoxic lineage integrity by preventing TFH-lineage deviation.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Linfopoese/genética , Linfócitos T Citotóxicos/citologia , Linfócitos T Auxiliares-Indutores/citologia , Animais , Linhagem da Célula , Ensaio de Imunoadsorção Enzimática , Epigênese Genética , Regulação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Imuno-Histoquímica , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Receptores CXCR5/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Regulação para Cima
11.
Immunol Cell Biol ; 95(8): 651-655, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28405016

RESUMO

In the light of new findings that lung tissue resident memory CD8+ T cells (Trm) represent major mediators of heterosubtypic immunity against influenza virus, it is of utmost importance to understand the basic biological mechanisms behind induction, formation and maintenance of this cell population. Addressing these important knowledge gaps will potentially inform development of superior, broadly protective influenza vaccines and new immunization strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Animais , Humanos , Memória Imunológica , Pulmão/virologia , Vacinação em Massa
12.
Front Immunol ; 8: 40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28191007

RESUMO

Unlike systemic infections, little is known about the role of repeated localized infections on (re)shaping pathogen-specific memory CD8 T cell responses. Here, we used primary (1°) and secondary (2°) intranasal influenza virus infections of mice as a model to study intrinsic memory CD8 T cell properties. We show that secondary antigen exposure, relative to a single infection, generates memory CD8 T cell responses of superior magnitude in multiple tissue compartments including blood, spleen, draining lymph nodes, and lung. Unexpectedly, regardless of the significantly higher number of 2° memory CD8 T cells, similar degree of protection against pulmonary challenge was observed in both groups of mice containing 1° or 2° memory CD8 T cells. Mechanistically, using pertussis toxin-induced migration block, we showed that superior antigen-driven proliferation and ability to relocate to the site of infection allowed 1° memory CD8 T cells to accumulate in the infected lung during the first few days after challenge, compensating for the initially lower cell numbers. Taken together, the history of antigen exposures to localized pulmonary infections, through altering basic cell biology, dictates dynamic properties of protective memory CD8 T cell responses. This knowledge has important implications for a design of novel and an improvement of existing vaccines and immunization strategies.

13.
Curr Opin Immunol ; 42: 91-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27351448

RESUMO

T cells play a major role in control of both blood and liver stage of plasmodium infection. While immunization with certain attenuated whole-parasite vaccines that are attenuated at the liver stage of the infection induces protective T cell responses, even multiple exposures to natural infection in endemic areas do not lead to stable T cell memory or humoral immunity and sterilizing protection. One of the key differences between vaccination and natural exposure is the absence of blood stage during vaccination. Here we will discuss possible immunoregulatory strategies employed by blood stage of malaria leading to generation of severely compromised T cell and humoral immune responses and subsequent lack of sterilizing immunity.


Assuntos
Sangue/parasitologia , Fígado/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium/imunologia , Linfócitos T/imunologia , Animais , Sangue/imunologia , Humanos , Imunidade , Memória Imunológica , Imunomodulação , Estágios do Ciclo de Vida , Fígado/parasitologia , Linfócitos T/parasitologia , Vacinação
14.
Front Microbiol ; 5: 272, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936199

RESUMO

Malaria is a major global health problem, with severe mortality in children living in sub-Saharan Africa, and there is currently no licensed, effective vaccine. However, vaccine-induced protection from Plasmodium infection, the causative agent of malaria, was established for humans in small clinical trials and for rodents in the 1960s. Soon after, a critical role for memory CD8 T cells in vaccine-induced protection against Plasmodium liver-stage infection was established in rodent models and is assumed to apply to humans. However, these seminal early studies have led to only modest advances over the ensuing years in our understanding the basic features of memory CD8 T cells required for protection against liver-stage Plasmodium infection, an issue which has likely impeded the development of effective vaccines for humans. Given the ethical and practical limitations in gaining mechanistic insight from human vaccine and challenge studies, animal models still have an important role in dissecting the basic parameters underlying memory CD8 T-cell immunity to Plasmodium. Here, we will highlight recent data from our own work in the mouse model of Plasmodium infection that identify quantitative and qualitative features of protective memory CD8 T-cell responses. Finally, these lessons will be discussed in the context of recent findings from clinical trials of vaccine-induced protection in controlled human challenge models.

15.
Influenza Other Respir Viruses ; 7(6): 1202-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102979

RESUMO

BACKGROUND: Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever-changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal virus infection in mice. Whole inactivated virus-induced cross-protection was found to be mediated primarily by flu-specific CD8+ T cells. OBJECTIVES: As it has been demonstrated that the route of vaccine administration strongly influences both the quantity and quality of vaccine-induced immunity, in this study, we determined which route of WIV administration induces optimal heterosubtypic cross-protection. METHODS: We compared the magnitude of the immune response and heterosubtypic protection against lethal A/PR/8/34 (H1N1) infection after subcutaneous (SC), intramuscular (IM), and intranasal (IN) vaccination with A/NIBRG-14 (H5N1) WIV. RESULTS: Subcutaneous and IM administration was superior to IN administration of influenza WIV in terms of flu-specific CD8+ T-cell induction and protection of mice against lethal heterosubtypic challenge. Surprisingly, despite the very low flu-specific CD8+ T-cell responses detected in IN-vaccinated mice, these animals were partially protected, most likely due to cross-reactive IgA antibodies. CONCLUSION: The results of this study show that the magnitude of WIV-induced flu-specific CD8+ T-cell activity depends on the applied vaccination route. We conclude that parenteral administration of WIV vaccine, in particular IM injection, is superior to IN vaccine delivery for the induction of heterosubtypic cross-protection and generally appears to elicit stronger immune responses than mucosal vaccination with WIV.


Assuntos
Proteção Cruzada , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinação/métodos , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Injeções Intramusculares , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
16.
Front Immunol ; 4: 282, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062748

RESUMO

The successful development of a mucosal vaccine depends critically on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle, derived from bacteria, used in mucosal subunit vaccines. The non-living particles, designated bacterium-like particles are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

17.
PLoS One ; 8(5): e63163, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658804

RESUMO

Current influenza vaccines fail to induce protection against antigenically distinct virus strains. Accordingly, there is a need for the development of cross-protective vaccines. Previously, we and others have shown that vaccination with whole inactivated virus (WIV) induces cross-protective cellular immunity in mice. To probe the mechanistic basis for this finding, we investigated the role of TLR7, a receptor for single-stranded RNA, in induction of cross-protection. Vaccination of TLR7-/- mice with influenza WIV failed to protect against a lethal heterosubtypic challenge; in contrast, wild-type mice were fully protected. The lack of protection in TLR7-/- mice was associated with high viral load and a relative paucity of influenza-specific CD8+ cytotoxic T lymphocyte (CTL) responses. Dendritic cells (DCs) from TLR7-/- mice were unable to cross-present WIV-derived antigen to influenza-specific CTLs in vitro. Similarly, TLR7-/- DCs failed to mature and become activated in response to WIV, as determined by the assessment of surface marker expression and cytokine production. Plasmacytoid DCs (pDCs) derived from wild-type mice responded directly to WIV while purified conventional DCs (cDCs) did not respond to WIV in isolation, but were responsive in mixed pDC/cDC cultures. Depletion of pDCs prior to and during WIV immunization resulted in reduced numbers of influenza-specific CTLs and impaired protection from heterosubtypic challenge. Thus, TLR7 plays a critical role in the induction of cross-protective immunity upon vaccination with WIV. The initial target cells for WIV appear to be pDCs which by direct or indirect mechanisms promote activation of robust CTL responses against conserved influenza epitopes.


Assuntos
Proteção Cruzada/imunologia , Apresentação Cruzada/imunologia , Vírus da Influenza A/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Receptor 7 Toll-Like/metabolismo , Vacinas Virais/imunologia , Animais , Antígenos Virais/imunologia , Células Dendríticas/imunologia , Cães , Imunização , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Células Madin Darby de Rim Canino , Camundongos , Especificidade da Espécie , Linfócitos T Citotóxicos/citologia , Vacinas de Produtos Inativados/imunologia
18.
PLoS One ; 7(1): e30898, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22303469

RESUMO

BACKGROUND: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with ß-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.


Assuntos
Proteção Cruzada/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Internalização do Vírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Peso Corporal/efeitos dos fármacos , Proteção Cruzada/efeitos dos fármacos , Formaldeído/farmacologia , Testes de Inibição da Hemaglutinação , Humanos , Soros Imunes/efeitos dos fármacos , Soros Imunes/imunologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/virologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Nucleoproteínas/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Propiolactona/farmacologia , Especificidade da Espécie , Análise de Sobrevida , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Vacinação , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia , Inativação de Vírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
19.
Vaccine ; 28(52): 8280-7, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-20965298

RESUMO

Induction of cytotoxic T lymphocyte (CTL) activity against conserved influenza antigens, e.g. nucleoprotein (NP) could be a step towards cross-protective influenza vaccine. The major challenge for non-replicating influenza vaccines aiming for activation of CTLs is targeting of antigen to the MHC class I processing and presentation pathway of professional antigen presenting cells, in particular dendritic cells (DCs). Intrinsic fusogenic properties of the vaccine particle itself can enable direct cytosolic delivery of the antigen by enhancing release of the antigen from the endosome to the cytosol. Alternatively, the vaccine particle would need to possess the capacity to activate DCs thereby triggering cell-intrinsic mechanisms of cross-presentation, processes that do not require fusion. Here, using fusion-active and fusion-inactive whole inactivated virus (WIV) as a vaccine model, we studied the relative contribution of these two pathways on priming and reactivation of influenza NP-specific CTLs in a murine model. We show that activation of bone marrow-derived DCs by WIV, as well as reactivation of NP-specific CTLs in vitro and in vivo were not affected by inactivation of membrane fusion of the WIV particles. However, in vivo priming of naive CTLs was optimal only upon vaccination with fusion-active WIV. Thus, DC-intrinsic mechanisms of cross-presentation are involved in the activation of CTLs upon vaccination with WIV. However, for optimal priming of naive CTLs these mechanisms should be complemented by delivery of antigen to the cytosol mediated by the membrane fusion capacity of the WIV particles.


Assuntos
Vacinas contra Influenza/imunologia , Fusão de Membrana , Orthomyxoviridae/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Apresentação Cruzada , Células Dendríticas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/imunologia , Vacinas de Produtos Inativados/imunologia , Proteínas do Core Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...